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7.1 � INTRODUCTION

7.1.1 � Introduction to Brain Waves and Electroencephalogram

In the most profound way, neurons are electrical components. The nuclear enve-
lope of a neuron contains numerous passageways allowing ions to enter and exit the 
membrane. The resting membrane potential of the cell is −70 mV, according to neu-
roscientists. The membrane’s potential varies on a frequent basis, due to stimuli from 
other axons. Some impulses augment the neuron’s membrane permeability, while 
others diminish it. Excitatory or inhibitory impulses are different ways to define them 
respectively since they simulate or hinder the production of action potentials. When 
an action potential occurs at the synapse between two neurons, it causes the neuron 
to release a chemical neurotransmitter. The neurotransmitter has the potential to 
either stimulate or suppress the following neuron’s action potential firing. Electrical 
impulses empower the brain to engage with one another by transmitting electric 
pulses. Neurons exploit electrical impulse to acquire and communicate effectively. 
Analysing signals or pictures from the brain can be used to better understand cogni-
tive behaviour. Eye movement, lip movement, recollection, attentiveness, hand grip-
ping and other motor and sensory states can be used to picture human activity. These 
states are linked to a certain signal frequency, which aids in the comprehension of 
the functional activity of a complicated brain structure. An electroencephalogram 
(EEG) is one technique for identifying electrical impulses in the brain.

EEG is a technique that identifies brainwave activity while using tiny metal 
plaques (anode and cathode) affixed to the head. The electrodes monitor miniscule 
electrical impulses generated via neural synapse’s activity. The impulses are boosted 
and displayed on a computer display as a plot or as a recording which can be repro-
duced in print. An EEG is used to uncover aberrations in activity in the brain that can 
assist in diagnosing a variety of brain maladies like schizophrenia and sleep distur-
bances. The EEG is represented as a sequence of trendlines. Regardless of whether 
one is awake or asleep during the test, the lines will vary in appearance, but each 
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phase has a standard pattern of brain activity. It could be a symptom of epileptic sei-
zures if the basic pattern of brain waves has been altered (Johns Hopkins Medicine 
2021; Mayo Foundation for Medical Education and Research 2022; WebMD n.d.).

The core frequencies affiliated with the human body are Delta, Theta, Alpha, 
Beta and Gamma, which are outlined below.

The Delta brainwaves have a frequency range of 0.1–3 Hz. These types of waves 
are emitted in conditions of deep, dreamless, non-rapid eye movement sleep or in 
the unconscious state. The Theta brainwaves range from 4 to 7 Hz and occur in 
situations where a person is recalling something or dreaming. The Beta waves are 
subdivided into low, midrange and high having frequency ranges of 13–15, 16–20 
and 21–30 Hz. The low beta waves are emitted in relaxed and focused conditions. 
The midrange beta is observed when one is thinking or is aware of their respective 
surroundings whereas high beta is emitted in cases of alertness or agitation. Lastly 
the Gamma waves with frequency of

 31 Hz and above are seen in situations of information processing and cognition 
(Hinton et al. 2006).

7.1.2 � Machine Learning and Deep Learning in Electroencephalogram

Machine learning (ML) can be defined as computer algorithms that can improve over 
time through experience and by using data. ML systems use large amounts of data, 
known as training data, to make predictions without being explicitly programmed to 
do so (Wikimedia Foundation 2022). This finds applications in various computing 
fields including – feature extraction, pattern recognition, data interpretation, classi-
fication and prediction. These systems are also capable of automating EEG analysis, 
and their results can be used to make decisions. They can be categorised into feature-
based (with handcrafted features), and end-to-end approaches (with learned features) 
(Gemein et al. 2020).

This diverse range of applications lead us to explore the use of ML techniques to 
infer simple commands by analysing brain wave data, hence, creating systems that 
are based on the analysis of EEG brain waves.

Before deep learning gained popularity, the standard EEG techniques combined 
different signal processing and ML methods for enhancing the signal-to-noise ratio, 
handling of EEG artefacts, feature extraction and interpretation of signals (Bitbrain 
2021).

As will be seen further in this chapter, the decoded signals can be fed into an 
Internet of Things (IoT) device, which can in turn take different actions based on 
the inputs.

7.1.3 �T hought-Controlled Internet of Things Devices

The IoT refers to physical devices that are capable of computing and are equipped 
with sensors, software and technologies that can be used to exchange data with 
external devices over the Internet or other communication networks.

A brain–computer interface (BCI) is a computer program that takes brain signals 
as input and translates them into commands that are passed on to various devices 
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that carry out desired actions. In general, all types of brain signals are capable of 
controlling a BCI system. The most popular ones are electrical signals from the brain 
measured from electrodes that are attached to the scalp, on the cortical surface, or in 
the cortex (Shih et al. 2012).

When working with brain–computer interfaces, one generally uses ML or deep 
learning techniques to develop classifiers, which accept the signal data and predict 
the action to be performed by extracting useful information. Figure 7.1 illustrates a 
simplified representation of a brain–computer interface model.

7.2 � ELECTROENCEPHALOGRAM FEATURE EXTRACTION

EEG devices record a wide range of information about human cognition, behaviour 
and emotions. The technology has applications in improving healthcare, emotional 
EEG analysis, as well as brain research. EEG data, on the other hand, is difficult 
to understand since it differs widely between persons, contains a lot of noise, and 
changes significantly over time, even for the same person. Visual inspection is a 
time-consuming, costly and inconvenient technique that does not scale well, and it 
cannot be used in BCI applications (Bitbrain 2021).

Therefore, in this section, we propose multiple state-of-the-art deep learning tech-
niques to extract information from EEG signals, ranging from Filter Bank Common 
Spatial Pattern (FBCSP) to hybrid architectures made up of Convolutional Neural 
Networks (CNNs) and Long Short-Term Memory (LSTM).

7.2.1 �F ilter Bank Common Spatial Pattern

The Common Spatial Pattern (CSP) approach is instrumental in developing appro-
priate filters occupying space in motor imagery (MI)-based BCI that differentiate 

FIGURE 7.1  Simplified representation of a brain-computer interface model.
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among the two categories of EEG data. The variance of two signal matrices of dif-
ferent classes can be enhanced with this technique. It is based on the diagonalisation 
of both classes’ covariance matrices at the same time. However, the efficacy of this 
spatial filter is determined by the frequency band in which it operates.

The CSP strategy is excellent for computing spatial filters for detecting Event-
related Desynchronisation (ERD) and Event-related Synchronisation (ERS).

The CSP strategy is excellent for computing spatial filters for the recognition of 
ERD and ERS. The goal of spatial filtering in BCI using the CSP method is to con-
struct features with the best variances for distinguishing two classes of EEG read-
ings. The CSP algorithm uses a method that involves diagonalising two covariance 
matrices at the same time.

	 R = PQ 	 (1.1)

In this equation, Q represents an M×N matrix containing data of a single trial of the 
raw EEG measurement; M is defined by the number of channels; N is the number of 
measurement samples per channel. The CSP projection matrix is P. The horizontal 
entries of P are the filters occupying space that do not move and the vertical entries 
of P-1 are the CSPs.

The spatial filtered signal R optimises the variance differences between the two 
groups of EEG observations. Nonetheless, only a tiny minority m of the spatial fil-
tered signal’s anomalies is typically utilised as classification features. The n initial 
and hindmost rows of Z, that is, Zp, pϵ {1 to 2n} result in Xp that is the feature vector 
provided as classifier’s input.
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When EEG calculations are raw or refined with an inadequately specified range of 
frequencies, categorisation based on CSP features generally yields low accuracies. 
As a result, the CSP approach is typically used when working with huge frequency 
ranges or manually setting a frequency range for a certain issue. Several solutions 
have been suggested to meet the obstacles of arbitrarily defining the effective par-
ticular aspect frequency range for the CSP algorithm.

On each of these sub-bands, spatial filters relying on the CSP methodology are 
applied.

The Sub-Band Common Spatial Pattern (SBCSP) algorithm was developed to 
alleviate the complication of arbitrarily designating the CSP algorithm’s operating 
frequency band for a given subject, and it has been shown to enhance classifica-
tion accuracy. Using a Gabor filter bank, SBCSP breaks down EEG signals into 
numerous sub-bands. On each of these sub-bands, spatial filters relying on the CSP 
methodology are applied. The score of the sub-band is fused using recursive band 
removal or a classification approach once it is obtained. The fused sub-band score 
then is evaluated using this procedure.
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The FBCSP is another innovative ML approach for interpreting EEG data in 
motor imagery-based BCI (FBCSP). The FBCSP has the following steps: filtering 
based on frequency, spatial filtering, selection of features and classifying the fea-
tures. SBCSP uses spatial filters, whereas FBCSP makes use of the potent filters with 
the designated CSP characteristics coupling. As a result, FBCSP only uses a small 
set of successful spatial filters. In comparison to employing the whole set of spatial 
filters, this minimises the computing complexity.

The EEG data are bandpass segmented into distinct frequency bands over the first 
round. A zero-phase Chebyshev Type II Infinite Impulse Response filter bank is used 
by FBCSP. This method eliminates the non-linear phase shift imposed by the IIR 
filter via using a zero-phase filtering. The characteristics are extracted from these 
bands in the second phase. The attribute selection methodology is adopted in the 
third step to uncover discriminative frequency band couplings and their correspond-
ing CSP properties.

In pattern classification, feature selection is stated as extracting a group of size 
k characteristics from a set of d features that yields in the minimal classification 
errors. The feature selection algorithms utilised here are Mutual Information-based 
Best Individual Feature (MIBIF), Mutual Information-based Naïve Bayesian Parzen 
Window, Mutual Information-based feature selection, Mutual Information-based 
Rough Set Reduction (MIRSR), Fuzzy-Rough set-based Feature Selection and 
MIRSR.

Following the use of feature selection methods, CSP characteristics are classi-
fied using a classification method in the fourth step. The NBPW classifier, Fisher 
Linear Discriminant (FLD), Support Vector Machine (SVM), Classification And 
Regression Tree, k-nearest neighbour, Rough set-based Neuro-Fuzzy System and 
Dynamic Evolving Neural-Fuzzy Inference System are among the classifiers used 
here.

The architecture of the Filter Bank Common Spatial Pattern is displayed in 
Figure 7.2.

FIGURE 7.2  Architecture of the filter bank common spatial pattern.
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The MIBIF selection algorithm, which designates four sets of CSP attributes, as 
well as the NBPW, FLD or SVM classification algorithms, are strongly proposed for 
use with FBCSP in MI-based BCIs, experimentally.

In MI-based BCI, the FBCSP is employed to interpret EEG signals. The dilemma 
of choosing the most appropriate functional frequency range for extracting distin-
guishing CSP traits has been tackled by FBCSP. FBCSP can learn subject-specific 
patterns from high-dimensional EEG recordings without the need for operator inter-
action, and it has reasonably good classification accuracies.

These deep learning techniques mentioned above are used to classify the EEG 
signals into indicator actions that tell the IoT or robotic devices what action to per-
form. This method can hence be used to develop EEG-based BCI systems that have 
the potential to not only help people with disabilities but also provide convenience to 
everyone (Ang et al. 2008).

7.2.2 � Deep and Shallow ConvNets

ConvNets are artificial neural networks that use convolutions as a major component 
to discover local patterns in data. The network architecture can be as simple as hav-
ing just one convolutional layer, or as complex as having several thousand layers. 
They start with extracting low-level features from raw data and work their way up to 
high-level features in the deeper layers (Schirrmeister et al. 2017).

Deep ConvNets have had a lot of success in recent years, especially in domains 
like computer imagery and speech recognition, where they are known to frequently 
outperform earlier state-of-the-art methods (LeCun et al. 2015). Through end-to-
end learning, deep learning with CNNs has greatly advanced the field of computer 
vision.

An EEG signal has properties that distinguish it from the most common CNN 
inputs, which are primarily images. The EEG signal, unlike static pictures, is essen-
tially time-series data derived from electrode measurements. Moreover, it has a low 
signal-to-noise ratio, which means that it contains information that is irrelevant to 
the task, which often affects the EEG signal more strongly than the relevant informa-
tion (Bast et al. 2006). These characteristics may make learning features for EEG 
signals more difficult than for standard images. As a result, existing image-based 
ConvNets architectures must be altered for EEG inputs, and the resulting decoding 
accuracies must be thoroughly compared to traditional EEG feature extraction tech-
niques (Schirrmeister et al. 2017).

One can describe the dataset as pairs of EEG recording trials and class labels 
under the assumption that each session of recording (time-segment) focuses on one 
class. This enables one to treat the task as a supervised learning problem. Such data-
sets can be created for multiple subjects. The input Xj corresponds to trial j and 
contains the pre-processed signals of the electrodes. The class label of Xj is denoted 
by yj and its values correspond to a specific thought-based command.

There are two CNN architectures for extracting information from EEGs proposed 
in (Schirrmeister et al. 2017), namely – Deep ConvNets and Shallow ConvNets.
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The Deep ConvNet architecture is made up of a unique first block built to handle 
EEG inputs, followed by three generic convolution-max-pooling blocks, and ends 
with a dense layer that uses the softmax function for classification as shown in 
Figure 7.3. The first convolutional block is divided into 2 layers to address the huge 

FIGURE 7.3  The deep ConvNet architecture.
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FIGURE 7.4  Architecture of shallow ConvNet.

amount of input channels. Each filter performs a temporal convolution in the first 
layer, followed by spatial filtering with weights for all pairs of electrodes using filters 
from the earlier temporal convolution in the second layer.

Similarly, a shallow architecture designed based on the FBCSP pipeline is also 
found to perform well at decoding raw EEG signals.

The Shallow ConvNet architecture is designed such that its first two layers are 
similar to the Deep ConvNets, and conduct a temporal convolution followed by a 
spatial filter. These steps are similar to FBCSP’s bandpass and CSP spatial filter 
phases. These layers are followed by a squaring non-linearity, a mean pooling layer 
and a logarithmic activation to replicate FBCSP’s trial log-variance computation as 
shown in Figure 7.4. The Shallow ConvNet encapsulates all computations in a single 
network, unlike FBCSP, and allows the simultaneous optimisation of all steps.

To use ConvNets for classification, the outputs are generally converted to condi-
tional probabilities P(lk | Xj) using the softmax function, where lk represents a class 
label. This is a standard linear classification task.

The Deep and Shallow ConvNets show a better decoding accuracy as compared 
to the traditional FBCSP approach. In particular, the Deep ConvNet shows a 0.5 
to 2.9% increase on different EEG datasets. The Shallow ConvNet is a bit more 
extreme, showing a 1.9% decrease to a 5.7% increase in the decoding accuracy on 
different datasets (Schirrmeister et al. 2017).
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7.2.3 �EEGN et

Another approach based on the use of ConvNets is proposed in (Lawhern et al. 2018), 
which describes a CNN-based architecture that is designed to be compact and can 
classify EEG signals from various BCI paradigms. The model, which is referred to 
as EEGNet, is designed to be as compact as possible and introduces the use of depth-
wise and separable convolutions to encapsulate well-known EEG feature extraction 
concepts.

In essence, EEGNet architecture is proposed to generalise across multiple BCI 
paradigms without the need for large volumes of data and for extracting neurophysi-
ologically interpretable features. The model is made up of two convolutional blocks 
followed by a dense classifier that uses softmax activation.

The first convolutional block consists of two sub-blocks. The first sub-block is a 
standard convolutional layer with F1 filters followed by batch normalisation, and the 
second sub-block is made up of a depthwise convolutional layer having D*F1 filters 
(where D is the depth of the layer), followed by batch normalisation, average pooling 
and a dropout of either 25% or 50% for regularisation. This is done not only to learn 
a spatial filter but also to reduce the number of trainable weights in the model. When 
utilised in EEG-specific applications, this process enables the efficient extraction 
of frequency-specific spatial filters by providing a straightforward means to learn 
spatial filters for each temporal filter. This two-step convolution technique is in part 
inspired by a traditional EEG extraction technique – FBCSP.

The second block implements a separable convolutional layer with F2 filters fol-
lowed by batch normalisation, average pooling and dropout (25–50%) for regula-
risation. The separable convolution is primarily responsible for clearly separating 
relationships inside and across the feature maps by learning a kernel to first sum-
marise each feature map separately and then combining the results ideally. It also 
reduces the number of trainable parameters, and thus increases the compactness of 
the model. This procedure, when utilised for EEG-based tasks, separates learning 
the summarisation process for individual feature maps in time (known as depthwise 
convolution) from learning the merging process for the feature maps optimally (the 
pointwise convolution). This method is especially beneficial for EEG signals because 
distinct feature maps are capable of representing data at different time scales.

Finally, the classification block flattens the resulting output of the third block and 
directly uses a Softmax layer having N units (where N is the number of class labels). 
The use of a dense layer is avoided to increase the compactness of the model. The 
architecture of EEGNet is depicted in Figure 7.5.

All convolution layers in the model use the linear activation function, and the 
batch normalisation layers of the depthwise and separable convolution block use the 
ELU activation. The filter sizes in EEGNet are chosen based on the sampling rate 
(frequency) of the data. For example, in the original paper on EEGNet (Lawhern et 
al. 2018), the authors propose the filters of the first convolutional block of size (1, 64) 
so that the filter length is half the data sampling rate.

EEGNet is found to have considerably less number of parameters as compared to 
Shallow ConvNets and Deep ConvNets, while not only maintaining the performance 
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FIGURE 7.5  Architecture of the EEGNet.

standard similar to Deep ConvNet across cross-subject analyses, but also outper-
forming it in nearly all within-subject analyses.

ERP (event-related potential) is a recorded brain response that is the direct out-
come of a specific sensory, cognitive, or motor event (Luck 2014). Shallow ConvNet 
is observed to perform poorer on event-related prediction BCI datasets in both 
within-subject and cross-subject assessments.

7.2.4 �H ybrid Deep Neural Networks Using Transfer Learning

A hybrid Deep Neural Network employs CNN and LSTM that is capable of extract-
ing spatial and temporal features of the Motor Imagery (MI) signal of the EEG. One 
major hindrance in BCI is the difference arising between individuals in MI patterns. 
This leads to a needless time consumption where the classification model undergoes 
training from scratch on data from a new candidate. Transfer Learning (TL) effec-
tively addresses this issue by fine-tuning the Fully Connected (FC) layer that catches 
upon the new candidate’s features with minimal training data, consuming less time. 
The proposed technique of Hybrid Deep Neural Networks (HDNN)-TL (Zhang et al. 
2021) deals with the individual differences in the 4-class MI signals.

The deep learning approach for classification of enormous and complex data are 
unprecedented, as they are successfully able to extract the non-linear features better 
than any other conventional classification method. Various methods for EEG clas-
sification are applied to MI signals ranging from traditional classifiers, like CSP and 
GNB (Sreeja et al. 2017), LDA (Vidaurre et al. 2010), to deep neural network archi-
tectures including RBM with fast Fourier transformation (Lu et al. 2016) for 2-class 
MI classification, new CNN architecture to extract temporal representation in MI 
signals (Sakhavi et al. 2018) and a deep CNN and LSTM model (Zhang et al. 2019). 
However, these do not emphasise solving the individual differences of candidates. 
TL is a method that focuses on imbibing knowledge gained from training on one 
task and is flexible enough to apply to a different but relevant task. Influenced by the 
above factors, this strategy has evolved into an HDNN-TL model that when applied 
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to the MI signals of EEG gives state-of-the-art accuracy. The dataset used is the 
2008 BCI Competition IV dataset 2a, consisting of a 4-class MI task for tongue, feet, 
right-hand, and left-hand recorded on 9 healthy candidates (Tangermann et al. 2012).

The in-depth architecture of HDNN-TL is shown in Figure 7.6. Feature extraction 
is done by OVR-FBCSP and HDNN with the feature-subject correlation handled by 
FC with TL technique.

FIGURE 7.6  Architecture of the hybrid deep neural network with transfer learning.
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OVR-FBCSP deals with multi-class MI tasks by combining four one-versus-rest 
CSP filters for the 4-class data to compute output for each filter bank. Spatially trans-
formed signal Z is obtained through (Zhang et al. 2021)

	 Z = WTX 	 (1.3)

where X is the originating signal, with W as the projection matrix.
The proposed architecture utilises two sub CNNs as mentioned in Figure 7.6. 

First has a monolayer involving one convolution with 5 × 5 size kernel and an FC 
layer. Second has three hidden layers with each convolution layer having a 3 × 3 size 
convolution kernel. ReLU activation is exercised to extract features of the MI sig-
nal. A max-pooling layer follows every convolution layer that diminishes the feature 
matrix size. Moreover, zero-padding technique is applied to ensure consistent output 
size matching input size. LSTM, an extension of RNN, is vital in revealing the tem-
poral correlations of time series EEG signals. Therefore, a parallel LSTM with a cell 
state of 32 is employed with CNN_2 to process the input signal of each time step fed 
by the CNN_1 layer sequentially.

FC follows the architecture after the CNN and LSTM components extract spatial 
and temporal features of the MI signal. FC has a three-layer feedforward neural 
network with the number of nodes in the respective layers as 512, 512 and 32 in each 
hidden layer, with a dropout network in the second layer to avoid overfitting. ReLU 
as the activation function for every hidden layer, the following Softmax function is 
selected,

	 y
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where m is the index of each class and T denotes the total number of classes (Zhang 
et al. 2021). We can utilise this through TL by fine tuning the parameters for the FC 
to train a classification model on new candidates. The learning rate of FC is 0.001. 
For this consolidated architecture, cross-entropy function is used as the loss func-
tion with adaptive method estimation used as the optimiser for the neural network 
training.

HDNN and HDNN-TL give a huge improvement over the traditional method giv-
ing a Cohen kappa value of 0.78 and 0.81 respectively (Zhang et al. 2021). HDNN-TL 
performs better due to fewer training data for a new subject which takes less compu-
tational time as well, whereas traditional methods would involve larger training data 
with a particular number of subject samples that need to be classified. Therefore, 
this proposed method avoids the loss of spatial and temporal features and addresses 
the individual differences in the EEG signals of diverse candidates. This technique 
can yield fruitful results when applied to imagery-based BCI or other types of EEG-
based BCIs.



86 Challenges and Solutions in Internet of Things-Based Smart Applications

7.2.5 �S iamese Neural Networks

Learning marvellous feature representations for ML applications may have high 
computational cost, and it can be especially onerous in situations when data are 
scarce. Moreover, when the number of classes representing the cerebral tasks for 
classification is increased, a fundamental hurdle in the development of pragmatic 
and user-friendly BCI systems is their restricted performance. The one-shot learning 
scenario is a definitive example of this, where one must make accurate predictions 
based on a couple samples of every class. Here, we will look at a learning technique 
for Siamese neural networks that use a unique structure to prioritise similarity (Koch 
et al. 2015).

Siamese neural networks are two or more neural networks that have a homoge-
neous structure and are trained simultaneously, to distinguish between classes to 
which the input may belong. ‘Homogenous’ here means that they have the same 
weight matrices and neural architecture; the changes in the weight matrix are also 
duplicated across the networks. It only uses lesser input data points, as its data-
hungry contemporaries, to attain discriminatory power that is equivalent to them. 
This method could be very useful in cases where there is a need to manufacture a 
thought-controlled device for a specific individual and only a handful of samples are 
available for training.

A Siamese neural network can be a pair of any two or more neural networks, 
however, to classify EEG signals we require that the twin neural networks be CNNs. 
Siamese networks learn the classification tasks by calculating the distance between 
inputs, rather than learning the probability distribution of the classes over the train-
ing data.

The input data must be partitioned into positive and negative samples where 
each sample is a triplet that includes a randomly selected image, another image of 
the same class for a positive sample, or an image from any other class, along with 
a Boolean denoting the correlation between the two images. These pairs are then 
passed through the networks in parallel, after which a feature vector is obtained, and 
let us assume its denoted by Hk, this is then utilised for finding differences between 
the two images. The network through which these input signals are passed is a con-
volutional neural network, as shown in the Figure 7.7, it provides us with a feature 
vector for a given input signal. There are a myriad of options available for the choice 
of architectures that can be used in this feature extraction step, they range from 
simple models built with intuition from the dataset, or extensively used pre-trained 
models like VGGNet, AlexNet, ResNet, etc. However, the best choice for this step 
must be derived from experimentation of several architectures on different splits of 
data (Shahtalebi et al. 2020).

For the MI classification problem, we denote the first EEG trial with { X C × Sk 
}T k=1, where C, S, T are the number of channels, samples and trials respectively. 
The preprocessing step is the application of a function f on each { X C × Sk } result-
ing in Hk = f(Xk) as the output of the preprocessing step. Let, Hk1 and Hk2 are 
the two outputs of the twin models, which are then passed to the distance function. 
Euclidean distance is one of the most used measurements, but Manhattan distance 
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is also a good alternative. Let D be the Euclidean distance metric, then the distance 
between two signals is given by,

	 D H H H Hk k k k1 2 2 1
2

,� � � � 	 (1.5)

After calculating the difference between the two inputs, contrastive loss, which is 
a prominent loss function that is widely employed, is used as a loss function. It is a 
distance-based loss rather than the more traditional losses. This loss is used to train 
embeddings to have a low Euclidean distance between two similar points and a large 
Euclidean distance between two different points. Contrastive loss is calculated as,

	 L W H H Y Y D Y m Dk k, , , ,2 1
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Where m > 0 denotes a radius around Hk to decide if a pair of signals are similar 
or not. The value of m is a hyperparameter that must be tuned to a specific data-
set. The model is then trained using Stochastic Gradient Descent, with the weights 
of the twin models tied together. Siamese Networks offer several advantages as a 
network architecture. One notable advantage is their resistance to class imbalance, 
which stems from their capability for one-shot learning. This means that Siamese 
Networks can effectively recognise and classify classes with only a few instances, 
making them well-suited for future scenarios where limited data is available for each 
class. Additionally, Siamese Networks excel at learning from inherent similarity. 
These networks are designed to focus on finding representations that classify similar 
classes, allowing them to capture semantic similarity in the data. However, there are 
some disadvantages associated with Siamese Networks. One of the drawbacks is that 
they typically require longer training times compared to traditional networks. This 
extended training duration is primarily a consequence of using quadratic pairings 
to learn from all available data, which can be slower compared to pointwise learn-
ing employed in traditional classification models. Another limitation is that Siamese 
Networks do not report probabilities. Instead, they rely on paired learning during 
training, and the output represents the distance from the input to each class. This 

FIGURE 7.7  Architecture of the siamese neural network.
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lack of probabilistic output can be a drawback in situations where probability esti-
mates are essential for decision-making or interpretation.

7.2.6 �R estricted Boltzmann Machine and Deep Belief Network

Boltzmann machines are graphs that are a crucial component while studying 
Statistical Mechanics and are named after the Boltzmann distribution. In this net-
work all the nodes are connected to each other, even the input nodes, unlike conven-
tional neural networks, also have edges between them. They are used to learn the 
distributions of input data and generate more data by sampling from the learned dis-
tribution. Boltzmann machines, on the other hand, have a serious practical problem: 
they appear to cease learning correctly when the machine is built up beyond a trivial 
size since the cost of statistical calculation increases exponentially. The Boltzmann 
machine architecture is shown as in Figure 7.8.

Restricted Boltzmann machines (Salakhutdinov et al. 2007), better known as 
RBMs, are an alternative to Boltzmann machines with more practical use cases. 
Their architecture is restricted to a bipartite graph of input layer neurons and the 

FIGURE 7.8  The Boltzmann machine architecture.
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hidden layer neurons. Although, they provide advantages over Boltzmann machines, 
they too suffer from slower training times. Training algorithms such as contrastive 
divergence are used to overcome these issues. The Restricted Boltzmann machine 
architecture is depicted in Figure 7.9.

A deep belief network is a generative artificial neural network that is constructed 
by stacking several RBMs on top of each other, the number of which is a hyper-
parameter that must be tuned while training (Hinton et al. 2006). The training of 
DBNs takes place by pre-training each of the component RBMs individually and 
then fine-tuning the entire model. Each RBM is trained with the objective to be able 
to reconstruct the input provided to the visible layer by tuning the weights of the 
hidden layer. These RBMs are then stacked on top of each other and a final softmax 
layer is applied to get a probability distribution over the mental imagery classes.

Before the signals can be passed to the network one needs to ensure that it has a 
minimum amount of noise to perform band-pass filtering and FFT on the signals. 
EEG signals have a very low signal-to-noise ratio because they are highly susceptible 
to noise due to insignificant bodily movements like the blinking of eyes, flinching 
neck muscles, etc. The band-pass filter allows frequencies in a fixed range to pass 
and attenuates frequencies that are outside the range (Oon et al. 2018). Research on 
neurology suggests that the reaction of the brain to MI lies in 5 frequency ranges, 
namely Alpha, Sigma, low Beta, high Beta and low Gamma, Electrooculography 
and electromyography introduce noise in the signals useful for motor imagery. Band-
pass filtering is applied to attenuate the signals that are outside the 8 and 35 Hz 
range. The classical architecture of DBNs is shown in Figure 7.10.

FIGURE 7.9  The restricted Boltzmann machine architecture.
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7.3 � APPLICATIONS

7.3.1 �E lectroencephalogram-based Brain-Controlled Prosthetic Arm

Myoelectric prosthesis have gained popularity in recent years. However, it has sev-
eral shortcomings, such as healthy nerves dependency and being quite costly. EEG-
based brain-controlled prosthetic arms can be utilised to address the shortcomings 
of myoelectric prosthetics and to support individuals with neuromuscular ailments. 
This is a broad spectrum approach that can aid severely disabled people in their daily 
affairs, notably by allowing them to move their arm autonomously. The four phases 
of this technology entail acquiring waves emitted by the brain, analysing the signal, 
systemising them into diverse command signals, and transmitting them to the arti-
ficial arm. The power of one’s mind to focus and concentrate influences the control 
of the prosthesis.

It is a BCI device which uses brain waves for command signals to control the 
prosthetic arm’s operations. This system may be separated into four steps in general. 
Detection of the brain wave signals, collection, propagation, and mapping are all 
steps in the signal processing process, which are stated as follows:

7.3.1.1 � Signal Detection
This step focuses on detecting the signals from the scalp of a person with care. 
Electroencephalography is a technique for detecting these impulses. The EEG 

FIGURE 7.10  Architecture of the deep belief network.
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measures voltage fluctuations in the brain’s neurons mediated by ionic current. The 
frequency band of the EEG is commonly used to characterise it. Delta, Theta, Alpha, 
Beta and Gamma are the primary types of frequencies of human EEG waves.

A Neurosky Mindwave mobile Headset as well as ThinkGear are used for this 
objective. The Neurosky system is made of dry electrodes and an electrical circuit 
for the dry electrodes. The system is impervious to noise. A single AAA battery 
powers the Mindwave headset. It uses Bluetooth to wirelessly transmit the detected 
signals. It has a ThinkGear chip. The analogue electrical impulses also known as 
brain waves with help of ThinkGear technology converts brain waves into digital 
signals using. It is a device that communicates with the wearer’s brainwaves.

7.3.1.2 � Signal Acquisition
The signals read by the Neurosky Mindwave headset are relayed over Bluetooth to 
the laptop. The signal is solely detected, interpreted, and converted into digital form 
by the headset. The laptop is used for signal acquisition. The raw brainwave data 
from the Neurosky Mindwave Headset is captured using MATLAB® code on a lap-
top. MATLAB® assists in the extraction of real-time raw brainwave measurements 
that are used to operate the prosthetic arm. Using the ZigBee transceiver module, the 
analogue electrical impulses will be sent as command signals to the microcontroller.

7.3.1.3 � Signal Transmission
Signal communication between the laptop and the microcontroller is required. With 
tiny, low-powered digital radios, ZigBee is used to create personal area networks 
(PANs). The transmission rate of ZigBee is 250 kbit/s. ZigBee is simple to set up and 
may be used with any type of microcontroller. Wireless connection between the lap-
top and the microcontroller is accomplished via ZigBee. The EEG signals are sent to 
the Arduino Uno from MATLAB®.

7.3.1.4 � Mapping
In the Arduino Uno microcontroller, the message from the ZigBee transponder must 
be routed to the artificial hand. The received signal will be used to control the pros-
thetic arm as a command signal.

The Arduino Uno is a microcontroller platform which is open source built on a 
basic I/O board. It comes with a development environment that allows you to use the 
processing language. It is an ATmega328P-based microcontroller board. There are 
fourteen pins that are digital on it. Six of these pins may be utilised as Pulse Width 
Modulation outputs, while the other six can be used as analogue inputs. It contains 
a Universal Serial Bus (USB) connection and a quartz crystal with a frequency of 16 
MHz. It may be powered via a USB connection linked to a computer or by simply 
connecting to a battery.

The framework of the prosthetic arm might be 3D printed or made of metal. The 
cost of a 3D-printed limb will be less than that of a robotic arm. Each fingertip will 
be hooked to its servo motor. The flexion, extension, and pinch movements will be 
regulated by all these linear actuators. The command signal created by Arduino Uno 
in response to the brainwave values received will control these three actions. As a 
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result, the prosthetic arm may be manipulated in real time utilising the command 
signal.

The three actions of the prosthetic arm are controlled by the attention level. These 
numbers may be divided into three categories. A distinct action is assigned to each 
range. These activities will be carried out by the Arduino in response to the raw EEG 
readings received. The attention ranges for various actions are shown in Table 7.1.

To regulate these three actions, the user must educate his or her brain to improve 
control precision and significantly minimise latency.

EEG-based brain-controlled prosthetic arms have sparked considerable interest 
because they have tremendous potential to raise the standard of living for patients 
with disabilities. The attention values have been divided into three groups, two of 
which are used to regulate the two primary hand motions. The brainwaves were used 
to regulate these three movements with an accuracy of 80%. Using a large number 
of sensors to collect brain waves from various parts of the brain allows for greater 
precision. A long period of training would enable the user to manipulate the arm 
more precisely. Broader EEG sensors would also improve accuracy and allow for 
more ranges to be explored (Bright et al. 2016).

7.4.2 � Mind-Controlled Wheelchair

Wheelchairs are used by people that are unable to walk due to illness, injury, prob-
lems related to old age, or disability, which can be caused by various mental and 
physical conditions. Modern electric wheelchairs have completely changed how dis-
abled people go up steep inclines, and ramps and also provide tighter turning radius 
due to a powerful engine and smaller wheels. However, this requires some amount of 
proficiency to control the wheelchair as it is essentially a motor vehicle in today’s day 
and age, and not every patient who needs a wheelchair is able to control the modern 
wheelchair deftly. A mind-controlled wheelchair, that allows the user to calibrate 
their will to physically control the speed and direction of the wheelchair, proves 
really beneficial to users who are not able to drive such machines. This allows ven-
erated users to control the wheelchair as an extension of their bodies, empowering 
them to overcome their physical disabilities.

This section discusses an approach to building mind-controlled wheelchairs, 
including the data requirement, signal processing tasks, the various ML models 
employed, and the hardware components required for the same.

The first step is data acquisition, the unfinished data from the brain is collected 
with the aid of an EEG headset called Emotiv EPOC+, which is set up according to 
the 10/20 international electrode location scheme. AF3, F7, FC5, FC6, F3, T7, P7, 
O1, O2, P8, T8, F4, F8, and AF4 are the 14 channel electrodes on the Emotiv head-
set, including two reference electrodes. The acquired signals are sampled at 128 Hz 
by the headset. The gathered signals should be sent to the CPU. Since the data col-
lected from all 14 channels is massive, the system automatically should choose the 
top k maximum power channels utilising power spectral density to reduce process-
ing times and increase system throughput (Swee et al. 2016).
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TABLE 7.1
Summary of All the Feature Extraction Techniques Discussed

Section Key Points

Filter Bank 
Common Spatial 
Pattern

	 -	CSP is employed in the development of spatial filters for Event-related 
Desynchronisation and Event-related Synchronisation.
•	 The intent of CSP spatial filtering is to elevate the volatility distinctions 

among two groups of EEG observations.SBCSP (Sub-Band Common 
Spatial Pattern) emerged to solve the problem of establishing frequency 
ranges for CSP.

•	 It improves the precision of classification by using spatial filters on 
sub-bands.

Deep and Shallow 
ConvNets

	 -	ConvNets are employed for EEG classification, but EEG information 
remains peculiar in that it is data from time series with a low signal-to-noise 
ratio.

	 -	Deep ConvNets and Shallow ConvNets are utilised to classify EEG data.
	 -	Deep ConvNets are made up of convolution-max-pooling blocks.
	 -	Shallow ConvNets duplicate each stage of FBCSP, incorporating bandpass 

and spatial filtering.
	 -	These ConvNets outperform standard approaches in terms of deciphering 

accuracy.

EEGNet 	 -	EEGNet is a small CNN-based framework for classifying EEG signals.
	 -	 It captures EEG feature extraction principles using depthwise and 

segmented convolutions.
	 -	The EEGNet design is intended to be generalisable across many BCI 

paradigms.
	 -	 It has far less variables than comparable models while yet performing well.

Hybrid Deep 
Neural Networks 
using Transfer 
Learning

	 -	HDNN-TL is an amalgamated framework for EEG signal categorisation that 
employs CNN and LSTM.

	 -	 It handles specific variations in EEG signals by fine-tuning models for 
classification with little training data using Transfer Learning.

	 -	 In regard to correctness and speed of computation, HDNN-TL exceeds 
standard approaches.

Siamese Neural 
Networks

	 -	Siamese Neural Networks are used for one-shot learning, recognising few 
signals per class with minimal training data.

	 -	They prioritise similarity and focus on learning representations for similar 
classes.

	 -	However, they require longer training time compared to traditional networks 
and donot provide probabilities but distances.

Restricted 
Boltzmann 
Machine and 
Deep Belief 
Network

	 -	Restricted Boltzmann Machines (RBMs) are a practical alternative to 
Boltzmann Machines.

	 -	Deep Belief Networks (DBNs) stack multiple RBMs and use pre-training 
and fine-tuning to classify EEG signals.

	 -	DBNs are used for feature extraction and classification.
	 -	Band-pass filtering is applied to EEG signals to remove noise.
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The second step is preprocessing, raw EEG signals are extremely noisy and pro-
vide little information for the classification task at hand, however, there are signal 
preprocessing methods that can be applied to extract quantifiable features from the 
signals. Band-pass filtering is one such method, which allows only the signals in a 
certain frequency range to pass through and filters out or attenuates the signals that 
lie outside the predefined frequency range. This reduces noise in signal by eliminat-
ing signals that are proven to be an impediment to MI tasks, in previous research. 
Before the signals can be sent for feature extraction, they must be divided into sev-
eral classes such as Delta, Theta, Alpha, etc.

These are some of the preprocessing techniques used for signal processing that 
can be used for EEG signals.

After the signals have been rid of the noise by preprocessing, the next step is fea-
ture learning. There are several techniques for feature extractions that fall under two 
main branches namely, signal analysis and representation learning. Signal analysis 
techniques include Short-Time Fourier Transform, Fast Fourier Transform, Wavelet 
Transform, etc. EEG signals are non-stationary in nature, that is, changing with 
time, and hence cannot be represented accurately with FFT. STFT can be used for 
non-stationary signals. STFT essentially breaks down each signal into equal time 
segments and applies Fourier Transform on each of the segments, to decompose the 
signal into sinusoidal components.

Representation Learning can also be used by ML models to learn the feature 
autonomously, reducing the time allocated for manual feature selection and also 
works for different kinds of signals. CNNs are widely used for feature extrac-
tion of EEG signals, and some of the popular architectures were introduced in the 
‘Approaches’ section. Shallow and Deep CNNs are the simplest form of the model 
and can be used if the dataset collected is large as it learns the probability distribu-
tion of the classes over the input data. On the other hand, if the dataset is small, or 
specific to the user then one-shot learning techniques like Siamese neural networks 
can be used for feature extraction that uses a distance measure to classify the inputs.

The hardware system of this project is the one proposed by Sim Kok Swee et al 
(Swee et al. 2016). Hardware components of this system include the Emotiv EPOC+ 
headset, an Arduino board, an electric wheelchair, and a Bluetooth module. The 
entire system is connected as shown in Figure 7.11, the computer is connected for 
debugging purposes during development and is removed from the system after 
deployment.

High torque motors are necessary to operate the wheelchair with a person on it. 
As a result, scooter motors are used to power the wheelchair’s back wheels. This 
motor’s maximum voltage is DC 24 V. The motor has a power rating of 250 W. The 
motor spins at 3000 rpm and has a rated torque of 0.80Nm. The highest current 
drawn by this motor is 13.4 A.

Since the scooter motors demand a lot of electricity, a motor driver that can keep 
up is required. The scooter motor requires a lot of current, up to 13.5 A, thus the 
motor driver’s current rating must be higher than the DC motor’s maximum current. 
The motor driver that must be chosen such that it is a high current motor driver which 
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works with DC voltages ranging from 12 to 30 V. It should also be able to withstand 
a peak current of 160 A and a constant current of 60 A.

The ATmega328P microcontroller IC is used in the Arduino Uno microcontroller 
which includes 14 digital I/O pins and 6 analogue inputs on this microcontroller. Six 
of the 14 digital I/O pins can be set as PWM outputs directly. This microcontroller 
board also features a 16-MHz quartz crystal, a voltage regulator IC that can handle 
input voltages ranging from 6 to 20 V. The dimensions of the microcontroller board 
are 68.6 mm × 53.4 mm. There are four input switches throughout the wheelchair.

As mentioned previously, the motor driver requires two PWM pins for control 
signals and four output pins. The usage of pins is as follows, four analogue pins are 
used for input switches, four digital output pins are used for output, and two PWM 
pins are used to operate the motor driver. Moreover, because this microcontroller is 
miniature, it can be easily embedded inside the wheelchair. Bluetooth HC-06 can be 
used as the wireless module. The HC-06 is a Bluetooth serial module that utilises 
a serial port to facilitate a Bluetooth connection by using the Serial Port Protocol. 
It has a baseband and a 2.4 GHz radio transceiver. This module has a low-power 
I/O range of 1.8–3.6 V. The HC-06 connects to the Arduino Uno, this enables the 
wheelchair’s microcontroller board to communicate and accept command signals 
wirelessly from any Bluetooth device.

The Emotiv EPOC headset is a portable EEG device with several channels and 
excellent resolution for BCI applications. This headgear has 14 channels, the data 
for which are collected by 14 electrodes to capture the brain’s EEG signals. It has 
the most electrodes of any commercially available EEG gadget. A single ADC with 
sequential sampling is used in this device. A sampling rate of 128 samples per sec-
ond is used by the authors. The headset’s battery is a rechargeable LiPoly battery that 

FIGURE 7.11  Information flow diagram of mind controlled wheelchair.
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can last for up to 12 hours. Push, pull, left, right and other mental instructions are 
some examples that should be considered during implementation. The brain com-
mand classification model is extremely helpful in reading the user’s mental com-
mand and controlling the electrical wheelchair’s movement.

7.5 � CONCLUSION

Brain-controlled interfaces (BCIs) are used to enable users to interact with IoT 
devices using their thoughts. Such systems are gaining popularity due to their 
diverse range of potential applications, as well as the continued benefits they provide 
in the medical field. The most challenging and important component of a BCI is the 
classifier, which is responsible for interpreting and classifying brain waves into dif-
ferent actions to be executed by the IoT devices. In this chapter, EEG-based BCIs 
are explored which analyse EEG signals to execute different actions. The section 
titled ‘EEG Extraction Techniques’ focused on various ways in which a BCI classi-
fier can be built using modern ML and deep learning techniques. The summary of 
the methods discussed have been compared and noted down in Table 7.1. Two major 
applications of these systems in the medical field are also discussed, which helped in 
easing the lives of people suffering from physical disabilities.

REFERENCES

Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008, June). “Filter bank common spa-
tial pattern (FBCSP) in brain-computer interface.” In 2008 IEEE International Joint 
Conference on Neural Networks (IEEE World Congress on Computational Intelligence) 
(pp. 2390–2397). IEEE.

Bast, T., Boppel, T., Rupp, A., Harting, I., Hoechstetter, K., Fauser, S., ... Scherg, M. (2006). 
“Noninvasive source localization of interictal EEG spikes: Effects of signal-to-noise 
ratio and averaging.” Journal of Clinical Neurophysiology, 23(6), 487–497.

Bright, D., Nair, A., Salvekar, D., & Bhisikar, S. (2016, June). “EEG-based brain-controlled 
prosthetic arm.” In 2016 Conference on Advances in Signal Processing (CASP) (pp. 
479–483). IEEE.

Gemein, L. A., Schirrmeister, R. T., Chrabąszcz, P., Wilson, D., Boedecker, J., Schulze-
Bonhage, A., ... Ball, T. (2020). “Machine-learning-based diagnostics of EEG pathol-
ogy.” NeuroImage, 220, 117021.

Hamel, P., & Eck, D. (2010, August). Learning features from music audio with deep belief 
networks. In ISMIR (Vol. 10, pp. 339-344).

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). “A fast learning algorithm for deep belief 
nets.” Neural Computation, 18(7), 1527–1554.

How deep learning is changing machine learning AI in EEG Data Processing. Bitbrain. 
(2021, March 25). Retrieved March 29, 2022, from https://www​.bitbrain​.com​/blog​/ai​
-eeg​-data​-processing.

Johns Hopkins Medicine. (2021, August 8). “Electroencephalogram (EEG).” Retrieved March 
28, 2022, from https://www​.hopkinsmedicine​.org​/health​/treatment​-tests​-and​-therapies​
/ele​ctro​ence​phalogram​-eeg.

Koch, G., Zemel, R., & Salakhutdinov, R. (2015, July). Siamese neural networks for one-shot 
image recognition. In ICML deep learning workshop (Vol. 2, No. 1, pp. 1-30).

https://www.bitbrain.com/blog/ai-eeg-data-processing
https://www.bitbrain.com/blog/ai-eeg-data-processing
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg


97Deep Learning Techniques for Thought-Controlled IoT Devices

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. 
(2018). “EEGNet: A compact convolutional neural network for EEG-based brain–com-
puter interfaces.” Journal of Neural Engineering, 15(5), 056013.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). “Deep learning.” Nature, 521(7553), 436–444.
Lu, N., Li, T., Ren, X., & Miao, H. (2016). “A deep learning scheme for motor imagery 

classification based on restricted Boltzmann machines.” IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, 25(6), 566–576.

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. MIT Press.
Mayo Foundation for Medical Education and Research. (2022, May 11). “EEG (electroen-

cephalogram).” Mayo Clinic. Retrieved March 25, 2022, from https://www​.mayoclinic​
.org​/tests​-procedures​/eeg​/about​/pac​-20393875.

Oon, H. N., Saidatul, A., & Ibrahim, Z. (2018, August). Analysis on Non-linear features of 
electroencephalogram (EEG) signal for neuromarketing application. In 2018 interna-
tional conference on computational approach in smart systems design and applica-
tions (ICASSDA) (pp. 1-8). IEEE.

Sakhavi, S., Guan, C., & Yan, S. (2018). “Learning temporal information for brain-com-
puter interface using convolutional neural networks.” IEEE Transactions on Neural 
Networks and Learning Systems, 29(11), 5619–5629.

Salakhutdinov, R., Mnih, A., & Hinton, G. (2007, June). Restricted Boltzmann machines for 
collaborative filtering. In Proceedings of the 24th international conference on Machine 
learning (pp. 791-798).

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., 
Tangermann, M., ... Ball, T. (2017). “Deep learning with convolutional neural networks 
for EEG decoding and visualization.” Human Brain Mapping, 38(11), 5391–5420.

Shahtalebi, S., Asif, A., & Mohammadi, A. (2020, July). “Siamese neural networks for EEG-
based brain-computer interfaces.” In 2020 42nd Annual International Conference of 
the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 442–446). IEEE.

Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012, March). “Brain-computer interfaces in 
medicine.” Mayo Clinic Proceedings. Retrieved March 29, 2022, from https://www​
.ncbi​.nlm​.nih​.gov​/pmc​/articles​/PMC3497935/

Sreeja, S. R., Rabha, J., Nagarjuna, K. Y., Samanta, D., Mitra, P., & Sarma, M. (2017, 
October). “Motor imagery EEG signal processing and classification using machine 
learning approach.” In 2017 International Conference on New Trends in Computing 
Sciences (ICTCS) (pp. 61–66). IEEE.

Swee, S. K., Kiang, K. D. T., & You, L. Z. (2016). “EEG-controlled wheelchair.” In MATEC 
Web of Conferences (Vol. 51, p. 02011). EDP Sciences.

Tangermann, M., Müller, K. R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., ... Blankertz, 
B. (2012). “Review of the BCI competition IV.” Frontiers in Neuroscience, 55.

Types of boltzmann machines. GeeksforGeeks. (2021, November 20). Retrieved April 3, 
2022, pp 6-55from https://www​.geeksforgeeks​.org​/types​-of​-boltzmann​-machines/

Vidaurre, C., Kawanabe, M., von Bünau, P., Blankertz, B., & Müller, K. R. (2010). “Toward 
unsupervised adaptation of LDA for brain–computer interfaces.” IEEE Transactions 
on Biomedical Engineering, 58(3), 587–597.

WebMD. (n.d.). “EEG test (electroencephalogram): Purpose, procedure, & results.” WebMD. 
Retrieved March 28, 2022, from https://www​.webmd​.com​/epilepsy​/guide​/ele​ctro​ence​
phalogram​-eeg.

Wikimedia Foundation. (2022, May 13). “Machine learning.” Wikipedia. Retrieved April 1, 
2022, from https://en​.wikipedia​.org​/wiki​/Machine​_learning.

Wikimedia Foundation. (2022, May 13). “Restricted Boltzmann machine.” Wikipedia. 
Retrieved April 3, 2022, from https://en​.wikipedia​.org​/wiki​/Restricted​_Boltzmann​
_machine

https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875
https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497935/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497935/
https://www.geeksforgeeks.org/types-of-boltzmann-machines/
https://www.webmd.com/epilepsy/guide/electroencephalogram-eeg
https://www.webmd.com/epilepsy/guide/electroencephalogram-eeg
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine


98 Challenges and Solutions in Internet of Things-Based Smart Applications

Zhang, R., Zong, Q., Dou, L., & Zhao, X. (2019). “A novel hybrid deep learning scheme for 
four-class motor imagery classification.” Journal of Neural Engineering, 16(6), 066004.

Zhang, R., Zong, Q., Dou, L., Zhao, X., Tang, Y., & Li, Z. (2021). “Hybrid deep neural net-
work using transfer learning for EEG motor imagery decoding.” Biomedical Signal 
Processing and Control, 63, 102144.


