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Abstract The advent of multimedia-based communication requires high-speed,
memory-efficient data storage of high quality images. One method for reducing the
dimensions of an image while preserving the finer texture characteristics is image
super resolution. This paper proposes a new model to deal with the reconstruction
time and artifacts that GAN-based deep learning models face. To increase the speed,
FASRGAN aims at reducing the complexity of generators. The network architecture
builds on the ideas from ESRGAN and RAMS to derive a more efficient FASRGAN.
This paper introduces the Residual Feature Attention Block (RRFAB) as a funda-
mental feature extraction block. Moreover, a relativistic discriminator is employed,
inspired by relativistic GAN, that predicts the realness value of the generated image
rather than a strict class value. Ultimately, training is performed on the model to
improve on the content loss, which helps to converge the weights in the later train-
ing stages. The proposed model FASRGAN, achieves PSNR scores 31.5 and 31.04,
SSIM scores 0.975 and 0.93 on Set5 and Set14 datasets, respectively, that are greater
than the state of the art techniques and SSIM scores that are comparable to them.

Keywords Single image super resolution *+ Generative adversarial network *
SRGAN - ESRGAN

1 Introduction

Single image super resolution is the task of re-creating high resolution images from
their low resolution counterparts. Due to the large amount of information that humans
perceive through visual media, super resolution has garnered a significant amount of
interest in the field of computer vision.

The problem itself can be avoided by using cutting-edge equipment to capture
visual material, however, this route is extremely costly and often infeasible. Gener-
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ating and transmitting high quality images is highly resource intensive. This serves
as a major disadvantage in many scenarios, such as cheap projects, quick implemen-
tation of prototypes, or other applications where generating high quality images may
just be a small part of a larger process. To overcome these limitations, the process
of upscaling low resolution images, known as image super resolution is proposed.
These super resolution algorithms like nearest neighbor interpolation [1], bilinear
interpolation [2], bicubic interpolation [3] principal objective was to approximate
pixels in high resolution photographs utilizing information from adjacent pixels.
However it was noted that the reconstructed images to use these methodologies
lacked high-frequency details.

Numerous approaches to deep learning have sprouted in the past few years. Con-
volutional Neural Networks (CNN) is recommended to deal with super resolution,
however it results in images having over smoothed details without sufficient focus
on the finer details. Other widely recognized deep learning techniques for super res-
olution are entrenched in the concept of GANs. A Generative Adversarial Networks
(GAN), is a deep structured learning paradigm wherein two neural networks vie with
one another to enhance the precision of their forecasts.

Super resolution through the use of GANs has been pioneered by SRGAN [4],
which trains the model through adversarial and content losses to provide visually
pleasing images. Many GAN-based models that further improve SRGAN have been
proposed in recent times, however these methods still have the presence of unwanted
artifacts in their outputs and the metrics of these images can be improved.

In this paper, banking on the latest innovations in the field of super resolution,
we propose a deep learning-based solution namely Feature Attention Super Resolu-
tion Generative Adversarial Networks (FASRGAN) which improves on ESRGAN.
This system works superior to current approaches in both qualitative and quantita-
tive assessments, done in terms of various metrics like Peak Signal-to-Noise Ratio
(PSNR) and Structure Similarity Index (SSIM).

2 Related Works

Super resolution has a longstanding record of different methods and techniques that
have been used in order to upscale the quality of images [5]. The dilemma of simply
inflating a low resolution snapshot to construct a compelling elevated rendition is
characterized as super resolution. Because of the availability among several strategies
of the challenge and the strict preconceived notions that the confluence of imagery
must adhere to in order to create convincing high resolution pictures, classic super
resolution strategies notably under perform in this realm [6].

Dahl et al. [6] leverage Generative Adversarial Networks (GAN) as its backbone
to address the challenge of image enhancement. The implementation of Genera-
tive Adversarial Networks has shown excellent outcomes and has great promise for
utilization as a viable and sustainable solution which can augment image quality.
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Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) pro-
posed by Wang et al. [7] also make use of GANs. Residual-in-Residual Dense Block
(RRDB) without batch normalization, which combines multifaceted residual net-
work and dense linkages, is the cornerstone employed for such systems. In order to
figure out the chance that the original image is substantially more genuine than a fab-
ricated one, it also incorporates a relativistic discriminator. Relativistic GAN assists
the discriminator to anticipate relative "real-ness" rather than an absolute value. It
uses network interpolation to reduce interferences in GAN-based approaches while
preserving excellent perceptual quality and incorporates the adversarial loss term to
the generator loss. Utilizing characteristics that give tighter supervision for recov-
ery of texture and homogeneity of luminosity prior to activation reduces perceptual
losses.

A myriad of GAN-based high resolution techniques are built on the Super Reso-
Iution Generative Adversarial Network (SRGAN) [4] proposed by Ledig Christian
et al. It passes permutations in sequence using numerous residual blocks, skip con-
nections, and up samples before rendering high resolution pictures. It incorporates a
perceptual loss function made up of adversarial and pixel loss. Using a discriminator
network trained to discern among super-resolved images and authentic photo-realistic
imagery, our approach is pushed to the actual picture spectrum by the adversarial
loss. Additionally, in lieu of using similarity in the pixel volume, we apply a pixel
loss emboldened by perceptual similarity.

Another way with which we can achieve super resolution is by using Deep Con-
volutional Networks [8—12]. This approach has proven to be quite accurate in the
generation of high resolution images from bicubic variants. Super Resolution Con-
volutional Neural Network is one technique involving use of CNNs (SRCNN) [8].
To get the image to the suitable dimensions, it is first enlarged using bicubic interpo-
lation. Every high-dimensional vector is non linearly translated onto the other after
that mapping is implemented to the image in which contiguous regions are excised,
and the patches are then amalgamated to form the culminating high resolution visual.

Deep Convolutional Neural Networks (DCNN) proposed by Jin Yamanaka et al.
[9] are another technique which makes use of the power of CNNs. This approach
utilizes a Convolutional Neural Network with network-in-network and skip con-
nections. With quicker processing and fewer information loss, the reconstruction
network’s network design achieves improved reconstruction performance.

Animprovement of Deep Convolutional Networks [9] is Very Deep Convolutional
Networks [10]. The basic rationale behind it is that the model’s overall accuracy is
vastly enhanced when the depth of the network is expanded by integrating multiple
layers. In this research, it is demonstrated that when model depth is increased, model
accuracy likewise increases.

The next approaches [13, 14] proposed by Jiang, Yuning and Li, Jinhua and Sal-
vetti Francesco et al. respectively, consist of improvements made to the preexisting
models by introducing a new loss term or a new block. Generative Adversarial Net-
works with Super Resolution similar to ESRGANSs, combining texture loss augments
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the original SRGAN model. They also include a new texture loss term that is derived
from the discriminator’s intermediate layers. This loss retrieves feature mappings
from the convolutional network of the generator and discriminator network’s inter-
mediate layer.

In addition to enhancing the array of data needed to upscale a visual, the Multi-
Image Super Resolution issue aggregates images from a variety of timestamps that
are incredibly close together in time. Leveraging spatial and temporal correlations,
the Residual Attention Multi-image Super Resolution network (RAMS) [14] model
is presented in this methodology to merge numerous pictures.

3 Implementation

The aim of the proposed architecture is to achieve image super resolution with
improved qualitative results. The architecture of the network is described first, with
the improvements introduced over the current state of the art models, and the next
subsection elaborates the losses that the model optimizes and their calculation. At
last, detail about the training process is provided.

3.1 Dataset

The Div2k dataset [15, 16] consists of RGB images about a variety of topics. The
dataset has 1000 high quality images that are divided into 800 train images, 100
validation set images, and 100 test images. The training input low resolution images
are taken from the bicubic/X4 folder and the corresponding high resolution images
are obtained from HR folder. The model is trained on the entire dataset in order to
maximize the learning set.

3.2 Network Architecture

The proposed design for the model is a Generative Adversarial Network which per-
forms image super resolution by generating images based on features learned from
input. The model includes a novel generator and a relativistic discriminator. The gen-
erator is separated into 4 components that are explained in the following subsections.
The architecture is shown in Fig. 1.

Input LR This component comprises of 2 layers namely LR input and a single
Conv2d layer to transform the image into desired channels. The main job of this
layer is to make sure the input is converted to a shape suitable to the next Feature
Attention Network.
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Fig. 1 Model architecture
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Feature Attention Network This section is the most crucial to the network, as it
controls which features to look closely at and what features to neglect in order to
achieve an accurate high resolution image. This network is built using groups of
Feature Attention Blocks. This block is inspired by the Feature Attention Block
proposed in [14], where a pair of such blocks are used in parallel to capture features
over multiple timesteps and for each local image space.

Feature Attention Blocks have two Conv2d transformations outside them to cap-
ture low-level features, which are then passed on to the block itself. The block shown
in Fig.2, contains a global average pooling layer and a sigmoid layer along with the
same layers outside it. The intuition here is to capture the high-level features and
consequently add the low-level features to them to get a combination of both flowing
through the network. A skip connection is also added to allow feature values to pass
through unaffected, facilitating a wider variety of functions.

These Feature Attention Blocks are then connected in groups of 3, and a residual
connection is added between each group to form the Residual Feature Attention
Blocks. The proposed model uses 16 of these blocks in sequence to capture high
resolution features from an LR image. The network ends with a single Conv2d layer
used to convert the number of channels suitable for the next Upsampling Network.

Upsampling Network The primary job of this component is to convert the infor-
mation extracted from the Feature Attention Network into a higher resolution image
of the desired size. It involves two Transpose Convolutions in the nearest neighbor
mode along with 2 convolution layers to get the desired image size as output.

Discriminator The discriminator network uses a classic VGG19 [17] network as
basic architecture, which comprises two components: feature extraction and classi-
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fier. The feature extraction component has 16 convolutional layers, and each convo-
lution layer has a LeakyReLU activation. The BatchNorm layer is used after each
convolutional layer except the first one, to avoid gradient vanishing problems. Instead
of a fully connected layer, Global Average Pooling (GAP) is used. GAP calculates
the pixel average value across all feature maps, and then all the values are passed
to the sigmoid activation function after linear combination. In the end, the network
produces D’s verdict for the input sample. Generator networks can recover outcomes
that are more similar to the original pictures by the outputs of a trained discriminator
network.

3.3 Losses

This section expands upon the complex loss function that is used to train FASRGAN.
The loss function is given as a weighted sum of Texture Loss Lix, Perceptual Loss
Lper, Pixel Loss Lyix, Adversarial Loss Lygy.

L = L +)¥*Lper+7/*Ladv +Lpix

Texture Loss Perceptual loss can enhance the overall quality of the reconstructed
picture, but it still introduces extraneous high-frequency features. To create the entire
loss function of G, the proposed model includes the texture loss shown in [18].
Lex promotes local texture information matching and retrieves feature maps created
by the discriminator network’s intermediary layer of a convolutional network. The
associated gram matrix is then calculated. The resulting gram matrix values are then
utilized to compute texture loss using the L2 loss function:

Liex = ||G(k(I&™) — G(k(1"R))| |5,

Perceptual Loss L, is called perceptual loss as it is based on VGG network and
computes feature layer information before activation layer instead of after it in order
to produce pictures that are more visually pleasing. In order to reduce the Euclidean
distance between two activation features, it is specified on the activation layer of the
pre-trained deep network:
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where W;; and H;; represent the shape of the respective feature maps in the VGG
model. The improvement overcomes two drawbacks of the original design: The
sparsity of activation layer outputs and the inconsistency in brightness of the image.
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Pixel Loss To assure the consistency of information between the reconstructed picture
and LR image, Mean Square Error (MSE) loss is utilized as the model’s pixel loss.
Its job is to reduce the squared difference in inaccuracy between pixels in produced
and actual HR pictures. Reducing the space between pixels can more rapidly and
effectively guarantee the correctness of the information included in the reconstructed
image, resulting in greater peak signal-to-noise ratio values. The loss is calculated
as:

2

Lo
Lcon:LMSE(p):NZHI:‘H_G(IiL’p)H (1
i=1

Adpversarial Loss This loss is employed to make the discriminator network produce
the probability that an image generated by the generator network is true or false
based on the adversarial game mechanism between the two networks. We use the
adversarial loss suggested in the WGAN-GP [19] model instead of the one proposed
in the GAN model to achieve a probability rather than a discrete class value. Improved
L,gy punishes D for the input gradient; it can aid in stable GAN architecture training
and provide higher-quality samples with quicker convergence times and no need for
hyperparameter modification.

Ladv = Ex~p(; [D (X)] - Ex~pdm [D ()C)] + qEXNpenalty [(deD (X)“ - 1)2] (2)

4 Results

4.1 Quantitative Analysis

The experiments are performed by enhancing images from the Set5 [20] and Set14
[21] datasets, to observe how introducing the FAB structure improves existing super
resolution techniques. For comparison, Bicubic, SRGAN [4], ESRGAN [7], and
TSRGAN [13] methods are employed, that were tested on Set5 [20] and Set14 [21].
The average PSNR and SSIM values are delineated in Tables 1 and 2. FASRGAN
records a higher PSNR and SSIM value when compared to all other methods and
indicates a better performance as compared to existing methods.

The reconstruction time for the different techniques is also compared as shown
in Table 3. As it can be seen, the significant improvement in PSNR and SSIM scores
comes without much compromise on speed, verifying its effectiveness.

4.2 Qualitative Analysis

To ensure the correctness of the reconstructed images, a qualitative evaluation is
performed by observing the reconstruction results. The reconstructed images from
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Table 1 PSNR and SSIM values on Set5 [20]

Algorithm PSNR SSIM
Bicubic 30.07 0.862
SRGAN 30.36 0.873
ESRGAN 32.05 0.895
TSRGAN 32.38 0.967
FASRGAN 31.07 0.975

Table 2 Reconstruction times on Set14 [21]

Algorithm PSNR SSSIM
Bicubic 27.18 0.786
SRGAN 27.02 0.772
ESRGAN 28.49 0.819
TSRGAN 28.73 0.810
FASRGAN 31.21 0.9578

Table 3 Reconstruction times on Set5 [20] and Set14 [21]

Algorithm Set5[20] Set14[21]
Bicubic 1.725 1.816
SRGAN 3.763 4.098
ESRGAN 3.247 3.862
TSRGAN 3.750 3.899
FASRGAN 2.770 2.885

the Bicubic, SRGAN, ESRGAN, and TSRGAN techniques are shown in Fig. 3 along
with the original high resolution image. The effectiveness of the proposed technique
is made evident when we compare the resulting images.

As it can be observed, FASRGAN better resolves the finer details of images as
compared to their counterparts, hence proving its qualitative superiority. Edges are
well-contained in the outputs without affecting the areas around it. The result is also
a smooth image that preserves the major as well as minor features.

5 Conclusion

The proposed model is a successful novel approach for Single Image Super Reso-
Iution. The new model is called FASRGAN and is built by improving the network
architecture of existing GAN-based SR techniques. It is evident from the quantita-
tive and qualitative analysis that FASRGAN outperforms the techniques that inspired
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Fig.3 Theresults of X4 for LR, HR, SRGAN, ESRGAN, and the proposed FASRGAN on Set5[20]
and Set14[21] images (Note: (i),(ii) in Fig.3 stand for the PSNR and SSIM values of the image,
respectively)

it. The model currently uses three losses—Pixel (MSE) Loss, Adversarial Loss, and
Perceptual Loss. The model however is not perfect and has room for further improve-
ment.

The future scope of this technique includes the ability to improve on color cor-
rection ability. The model faces a setback when predicting the pixels of a highly
dynamic portion of an image, which includes a region of an image which contains
pixels occupied by edges of multiple objects. A model that can improve upon this
while maintaining or upgrading the super resolution quality is most desirable.
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