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Abstract—India is prone to tropical cyclones annually, orig-
inating from the North Indian Ocean basin. Tropical cyclones
are destructive and sudden natural occurrences that annually
wreak havoc by taking a huge toll on human lives and property.
This engenders a need for accurately forecasting the scale of
such mass-destructive events, to provide us with enough time
to take precautionary measures that can reduce the death toll
and minimize costs. Using the CyINSAT dataset, which gives a
multimodal and temporal resolution for TCs occurred from 2014
to 2022, this paper employs and compares multiple techniques
to solve the wind speed forecasting issue. All models involve
recurrent networks along with image feature extractors, which
are used together to predict the next wind speeds from a sequence
of images. The architectural differences between these models
mainly focus on the nuances involved in handling the current
wind speed. The proposed architecture gives higher importance
to the currently recorded wind speeds and performs significantly
better than the baseline models. It successfully obtained an RMSE
of 6.31, MAE of 0.093 and MAPE of 4.53.

Index Terms—tropical cyclones, forecasting, time series, deep
learning

I. INTRODUCTION

One of the harmful meteorological events is a tropical
cyclone, commonly referred to as a hurricane or typhoon.
They are massive circumferential catastrophes with maximum
sustained wind gusts reaching 119 kph and torrential rainfall
which develop amid warm tropical waters. Given its significant
influence, precise tropical cyclone strength forecast is however
one issue that is of utmost significance. The Arabian Sea
as well as the Bay of Bengal are typically the sources of
tropical cyclones that predominantly affect the 7,516 km of the
shoreline of the Indian peninsula, the Lakshadweep Islands,
and the Andaman & Nicobar Islands. The India Meteorological
Department keeps an eye on every storm that develops inside
the North Indian Ocean from 100°E to 45°E.

Forecasting frameworks are separated into quantitative and
statistical approaches that rely on many parameters and vari-
ables. Highly complex processes are extensively incorporated

into numerical models. The precision and accuracy of the
mechanism can be impacted by complex computations and an
inadequate comprehension of such procedures. In comparison
to numerical models, statistical models are far more versatile
and demand less processing when the numerous constraints
of numerical models are accounted for. Numerous statisti-
cal approaches have already been investigated, including the
Generalized Additive Model (GAM) [1] and the Statistical
Hurricane Intensity Prediction Scheme (SHIPS) [2].

Numerous strategies have gained interest in recent times
to remedy this problem as an outcome of various machine
learning developments. Convolutional Neural Networks have
proven to be quite powerful when it comes to the processing
and extraction of image representations from satellite imagery.
One such implementation is a CNN based on LeNet-5 to
extract features from satellite imagery and estimate the inten-
sity [3]. To train from wind and geopotential altitude fields,
two CNNs are coupled in another approach. In this instance,
additional factors that directly influence the development of
a hurricane must be accounted for. A majority of these
methodologies downplay the significance of oceanographic
and meteorological data.

II. LITERATURE SURVEY

Deep Learning has been used extensively in the prediction
and damage evaluation of major weather events. We focus
on deep learning to solve the problem of tropical cyclone
intensity prediction from .infrared images of cyclones in the
Indian Ocean. Wang et al. [4] propose TC-3DCNN to solve
the problem. This method utilises the oceanic and atmosphere
weather parameters and visualises their values as images,
which are then fed to the model to learn the intensity of the
cyclone. In order to predict hurricane intensity, Devaraj et al.
[5], propose I-DCNN a deep convolutional network that uses
cropped IR images of the hurricanes of the Atlantic and Pacific
oceans with the wind speed at 6-h interval data, provided by
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the HURDAT2 database. They augment images based on the
wind speed of the cyclone to achieve better results, along with
using K-fold cross-validation.

Wimmers et al [6] use a different approach to this problem,
by using satellite passive microwave data collected in the
HURDAT2 dataset. Their proposed model DeepMicroNet is
a deep convolutional network, followed by 2 fully connected
layers, and a softmax activation to provide class probabilities.
They attempt to predict the wind speed, by dividing the range
of the wind speed data into 33 discrete class intervals. The
paper also presents a detailed hyperparameter analysis and
independent case testing of the model. Pan et al [7] use
recurrent neural networks to predict the intensity in a 24-
hour range. They use the Western North Pacific TC database
to train the model, which is provided by CMA/STI. Their
proposed method DLM uses intensity and longitude-latitude
data directly, instead of using cyclone satellite imagery.

Another technique to forecast tropical cyclones is proposed
by Biswas et al [8], which uses LSTMs. The paper studies
different types of architectures involving BiLSTMs, Stacked
LSTMs and proposes a 2-layered BiLSTM model. They use
a record of cyclones called the Best Track Dataset, which is
a tabular data of 341 cyclones with an average of 27 record-
ings for each cyclone. Dawood [9] et al use the HURSAT-
B1 database to train their proposed model Deep-PHURIE
for hurricane intensity prediction. Deep-PHURIE is a novel
convolution network architecture, whose outputs are smoothed
out using weighted averaging of the past 5 outputs. The
paper analyses the performance with their previously presented
predictor PHURIE, and statistically proves the superiority
of the proposed model over PHURIE. Guangchen Chen et
al. [10] propose a semi-supervised learning model that aims
to forecast cyclone intensity. Their approach uses a hybrid
similarity measurement method to Jie Lian et al. [11] Yuqiao
Wu et al. [12] Zili Liu et al. [13] After careful examination of
several papers that deal with this problem, we have identified
the following research gaps, that we aim to fill using our
techniques. Most of the papers reviewed use the HURDAT
dataset or some version of it which uses images of the
hurricanes in the Atlantic and Pacific oceans; little to no work
has been done on the cyclones in the Indian Ocean. The images
used in some models also include IR imaging, but hardly any
paper uses the water vapour spectrum of the IR band to factor
in the humidity present in the atmosphere. A few papers aim
to forecast the intensity of the cyclone in the next timesteps.
The majority of the work focuses on the prediction of intensity
from the current image.

III. METHODOLOGY

A. Dataset

CyINSAT dataset has been used which covers cyclones
that have taken place in India from 2014 to 2022. It is a
multimodal and temporal dataset containing images as well
as the numerical parameters of the cyclone, such as maximum
wind speed and pressure at every timestamp. Each timestamp

consists of 4 channels of satellite images from the Indian
National Satellite (INSAT): IR1, IR2, MIR, WV [14].

The images are arranged in temporal batches of size 12.
This means 12 images will be used as input to predict the
wind speed at the next time step.

B. Training Details

All models adhere to similar training details to ensure
they are comparable. The models are trained using the Adam
optimizer with a learning rate of 1e-3 and a weight decay of
1e-6 for ten epochs with a mini-batch size of four. The loss
function used is a standard MSE Loss metric, and all recurrent
layers have a sequence length of 12, equal to the dataset’s
window size.

C. Image Recurrence Model

The initial approach for forecasting involves a simple net-
work that extracts features from images at each timestep and
feeds the feature into a recurrent block as shown in Fig. 1.

The feature extraction is done using Resnet18 with frozen
pre-trained weights to reduce the number of training param-
eters. This is important because each instance of data has 12
sequential images of cyclones, where each image has 4 chan-
nels. Due to the large size of each instance, backpropagation
of gradients through time becomes extremely expensive.

The recurrent block is made up of LSTM with sequence
length equal to the temporal batch size of 12 and 128 hidden
dimensions. Each image in the sequence is first converted to
an encoded representation of its features through the feature
extraction block, and the sequence is fed through the LSTM.
This ensures the output contains information not only about the
last recorded image of the cyclone but also about the previous
sequence leading up to it. The output from the recurrent block
is passed on to a fully connected layer followed by a ReLU
activation function to predict the wind speed at the next step.

For comparing performance, the LSTM in the recurrent
block is replaced with GRU while maintaining the rest of the
network architecture which has obtained similar results as the
former model. The image recurrence model is a baseline due
to its simplistic approach to forecasting.

Fig. 1. Image Recurrence
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D. Image-WindSpeed Recurrence Model

In an attempt to increase the amount of data available to the
network, a multi-modal approach is implemented that uses the
input image sequence along with the recorded wind speeds for
every image in the input sequence to forecast wind speed at
the next timestep, which is depicted in Fig. 2.

The feature extraction block used is the same as the baseline
model, which consists of a frozen resnet18 having pretrained
weights. The recurrence block, however, is modified to intro-
duce multi-modality to the proposed model. This is done by
adding the wind speed data at each time step to the extracted
features and feeding the result through the LSTM layer. The
output now contains information about the image sequence of
the cyclone as well as the recorded wind speeds during the
sequence. This helps the model accurately predict the next
wind speed and provides an improvement over the baseline
model.

E. Image Recurrence with Dense WindSpeeds

To further reinforce the effect of recorded wind speeds on
the final prediction they are directly added to the fully con-
nected layer of the Image Recurrence model. This ensures that
the classification block has enough information to accurately
forecast wind speed at the next time step.

This approach also uses a frozen resnet18 as its feature
extraction block and a recurrent block that uses LSTM with a
sequence length of 12 and 128 hidden dimensions.

While the overall approach is multimodal in nature, the
recurrent block processes images only as opposed to the
Image-WindSpeed Recurrence approach. The output of the
recurrent block is a representation of the sequence of image
features. This representation is concatenated along with the
sequence of current wind speed labels and passed to the
classification block as shown in Fig. 3.

Contrary to the previous approach which feeds the wind
speeds through the LSTM along with the features, this maxi-
mizes the overall impact of the wind speeds on the classifica-
tion block and provides more context for forecasting.

IV. RESULTS

The availability of temporal satellite images containing a
myriad of channels facilitates forecasting different parameters

Fig. 2. Image-WindSpeed Recurrence Model

Fig. 3. Image Recurrence with Dense WindSpeeds

of a given tropical cyclone. In this experiment, we use half-
hourly images of the Indian Ocean region, along with wind-
speed for the given image. A hybrid deep learning architecture
is used to forecast these values given a fixed set of past images
and values. The architecture is as shown in Fig. 1, and serves
as a baseline to compare the precision of other approaches.
The metrics used to evaluate the models’ efficiency include
Mean Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE) and Mean Absolute Scaled Error (MASE). This
baseline model is evaluated on the forecasting and prediction
metrics and the scores for these metrics are shown in Table
I. These metrics show a decreasing trend with successive
approaches, which indicates a higher precision rate in the
values forecasted by the models. The metrics are essentially
varied measures of an error on a given test set of data.

MAPE tends to reflect errors in terms of the ratio to the
demand of that particular time series, which in turn promotes
low forecast values. MAPE scores of the Image Recurrence
with Dense WindSpeeds model are the least which proves the
fact that the model is able to make better forecasts irrespective
of the demand. On the other hand, RMSE values provide
information on single erroneous predictions, by weighting the
individual errors by a square root function, a lower RMSE
value corroborates the fact that no single prediction is incorrect
by a large margin. MAE values show the average absolute
error values, instead of simply adding error values, MAE sums
up the magnitude of errors to avoid omitting information.
The lowest MAE values for the Image Recurrence with
Dense WindSpeeds model reinforce that the model can make
predictions that are accurate irrespective of the dataset biases.

The results shown in the table show that the Image Re-

TABLE I
COMPARISON OF VARIOUS MODELS

Model RMSE MAPE MAE
Image Recurrence Model 26.23 0.566 36.63

Image-WindSpeed Recurrence Model 13.72 0.497 21.64
Image Recurrence with Dense WindSpeeds 6.31 0.093 4.53
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currence with Dense WindSpeeds model is capable of making
predictions that are least erroneous on average, have no outlier
predictions with absurdly high errors, and are scale-invariant
as compared to some of the elementary methods.

V. CONCLUSIONS

The proposed model successfully forecasts cyclone wind
speeds from satellite images, with minimum average error,
lowest outlier errors and the least scaled error values. The
model can precisely predict the wind speed of the next
time step given a series of images. This model can handle
multiple parameters simultaneously with good scalability; for
example, wind speed can be replaced for atmospheric pressure,
humidity, etc. The model is assessed using the regression
metrics: MAPE, RMSE and MAE. The future scope of this
model is to improve the ability of the model to learn the
time series of the other atmospheric variables of hurricanes
to model their growth accurately. It would be beneficial if
it could forecast the tropical cyclone along with its several
parameters over an extended period.
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